Applying Wearable Technology and a Deep Learning Model to Predict Occupational Physical Activities

Author:

Yan Yishu,Fan Hao,Li Yibin,Hoeglinger Elias,Wiesinger Alexander,Barr Alan,O’Connell Grace D.ORCID,Harris-Adamson Carisa

Abstract

Many workers who engage in manual material handling (MMH) jobs experience high physical demands that are associated with work-related musculoskeletal disorders (WMSDs). Quantifying the physical demands of a job is important for identifying high risk jobs and is a legal requirement in the United States for hiring and return to work following injury. Currently, most physical demand analyses (PDAs) are performed by experts using observational and semi-quantitative methods. The lack of accuracy and reliability of these methods can be problematic, particularly when identifying restrictions during the return-to-work process. Further, when a worker does return-to-work on modified duty, there is no way to track compliance to work restrictions conflating the effectiveness of the work restrictions versus adherence to them. To address this, we applied a deep learning model to data from eight inertial measurement units (IMUs) to predict 15 occupational physical activities. Overall, a 95% accuracy was reached for predicting isolated occupational physical activities. However, when applied to more complex tasks that combined occupational physical activities (OPAs), accuracy varied widely (0–95%). More work is needed to accurately predict OPAs when combined into simulated work tasks.

Funder

Liberty Mutual

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3