Characterizing Compost Rate Effects on Stormwater Runoff and Vegetation Establishment

Author:

Kranz Christina N.ORCID,McLaughlin Richard A.ORCID,Heitman Joshua L.

Abstract

Urban development exposes and compacts the subsoil, resulting in reduced infiltration, which often leads to problems with establishing vegetation, increased erosion, and increased runoff volumes. Compost incorporation into these soils can potentially enhance soil physical properties, vegetation establishment, and pollutant removal. The goal of this field study was to determine the efficacy of compost as a soil improvement measure to reduce runoff volume, improve runoff quality, and increase vegetation establishment on a disturbed sandy clay subsoil representing post-development conditions. Two sources of compost were tested: (1) a certified yard waste product at 10%, 30%, and 50% by volume, and (2) an uncertified yard waste product at 30% by volume, both compared to a tilled, no-compost control. Treatment plots were established at Lake Wheeler Road Field Laboratory in Raleigh, NC, and observed for one year. Tilling alone may have been sufficient to reduce runoff quantity as few differences were found between tilled and compost amended plots. Runoff water quality also did not differ according to compost addition. However, the certified compost increased biomass production proportionally to the amount added and compared to the uncertified compost at the same rate. The improved vegetation establishment with compost is important for long-term erosion control and ecosystem services. The results of this study suggest (1) tilling is a viable option to achieve high infiltration rates and reduce runoff volumes, (2) compost incorporation does not reduce nor improve water quality, and (3) compost may yield more robust vegetation establishment.

Funder

the North Carolina Department of Transportation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3