Rhizosphere Microbiomes of Potato Cultivated under Bacillus subtilis Treatment Influence the Quality of Potato Tubers

Author:

Song Jian,Kong Zhi-Qiang,Zhang Dan-Dan,Chen Jie-YinORCID,Dai Xiao-FengORCID,Li Ran

Abstract

Plants serve as a niche for the growth and proliferation of a diversity of microorganisms. Soil microorganisms, which closely interact with plants, are increasingly being recognized as factors important to plant health. In this study, we explored the use of high-throughput DNA sequencing of the fungal ITS and bacterial 16S for characterization of the fungal and bacterial microbiomes following biocontrol treatment (DT) with Bacillus subtilis strain Bv17 relative to treatments without biocontrol (DC) during the potato growth cycle at three time points. A total of 5631 operational taxonomic units (OTUs) were identified from the 16S data, and 2236 OTUs were identified from the ITS data. The number of bacterial and fungal OTU in DT was higher than in DC and gradually increased during potato growth. In addition, indices such as Ace, Chao, Shannon, and Simpson were higher in DT than in DC, indicating greater richness and community diversity in soil following the biocontrol treatment. Additionally, the potato tuber yields improved without a measurable change in the bacterial communities following the B. subtilis strain Bv17 treatment. These results suggest that soil microbial communities in the rhizosphere are differentially affected by the biocontrol treatment while improving potato yield, providing a strong basis for biocontrol utilization in crop production.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Elite Youth Program CAAS to J.Y.C.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3