Abstract
Congenital clubfoot is a complex musculoskeletal deformity, in which a stiff, contracted tissue forms in the medial part of the foot. Fibrotic changes are associated with increased collagen deposition and lysyl oxidase (LOX)-mediated crosslinking, which impair collagen degradation and increase the tissue stiffness. First, we studied collagen deposition, as well as the expression of collagen and the amount of pyridinoline and deoxypyridinoline crosslinks in the tissue of relapsed clubfoot by immunohistochemistry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA). We then isolated fibroblast-like cells from the contracted tissue to study the potential inhibition of these processes in vitro. We assessed the effects of a LOX inhibitor, β-aminopropionitrile (BAPN), on the cells by a hydroxyproline assay, ELISA, and Second Harmonic Generation imaging. We also evaluated the cell-mediated contraction of extracellular matrix in 3D cell-populated collagen gels. For the first time, we have confirmed significantly increased crosslinking and excessive collagen type I deposition in the clubfoot-contracted tissue. We successfully reduced these processes in vitro in a dose-dependent manner with 10–40 µg/mL of BAPN, and we observed an increasing trend in the inhibition of the cell-mediated contraction of collagen gels. The in vitro inhibitory effects indicate that BAPN has good potential for the treatment of relapsed and resistant clubfeet.
Funder
Charles University
the Ministry of Health of the Czech Republic
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献