Self-Assembled Nanoparticles Based on Block-Copolymers of Poly(2-Deoxy-2-methacrylamido-d-glucose)/Poly(N-Vinyl Succinamic Acid) with Poly(O-Cholesteryl Methacrylate) for Delivery of Hydrophobic Drugs

Author:

Levit Mariia,Vdovchenko Alena,Dzhuzha Apollinariia,Zashikhina NataliaORCID,Katernyuk ElenaORCID,Gostev Alexey,Sivtsov Eugene,Lavrentieva AntoninaORCID,Tennikova TatianaORCID,Korzhikova-Vlakh EvgeniaORCID

Abstract

The self-assembly of amphiphilic block-copolymers is a convenient way to obtain soft nanomaterials of different morphology and scale. In turn, the use of a biomimetic approach makes it possible to synthesize polymers with fragments similar to natural macromolecules but more resistant to biodegradation. In this study, we synthesized the novel bio-inspired amphiphilic block-copolymers consisting of poly(N-methacrylamido-d-glucose) or poly(N-vinyl succinamic acid) as a hydrophilic fragment and poly(O-cholesteryl methacrylate) as a hydrophobic fragment. Block-copolymers were synthesized by radical addition–fragmentation chain-transfer (RAFT) polymerization using dithiobenzoate or trithiocarbonate chain-transfer agent depending on the first monomer, further forming the hydrophilic block. Both homopolymers and copolymers were characterized by 1H NMR and Fourier transform infrared spectroscopy, as well as thermogravimetric analysis. The obtained copolymers had low dispersity (1.05–1.37) and molecular weights in the range of ~13,000–32,000. The amphiphilic copolymers demonstrated enhanced thermal stability in comparison with hydrophilic precursors. According to dynamic light scattering and nanoparticle tracking analysis, the obtained amphiphilic copolymers were able to self-assemble in aqueous media into nanoparticles with a hydrodynamic diameter of approximately 200 nm. An investigation of nanoparticles by transmission electron microscopy revealed their spherical shape. The obtained nanoparticles did not demonstrate cytotoxicity against human embryonic kidney (HEK293) and bronchial epithelial (BEAS-2B) cells, and they were characterized by a low uptake by macrophages in vitro. Paclitaxel loaded into the developed polymer nanoparticles retained biological activity against lung adenocarcinoma epithelial cells (A549).

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3