Author:
Kikuchi Kei,Kaida Daisuke
Abstract
The potent splicing inhibitor spliceostatin A (SSA) inhibits cell cycle progression at the G1 and G2/M phases. We previously reported that upregulation of the p27 cyclin-dependent kinase inhibitor encoded by CDKN1B and its C-terminal truncated form, namely p27*, which is translated from CDKN1B pre-mRNA, is one of the causes of G1 phase arrest caused by SSA treatment. However, the detailed molecular mechanism underlying G1 phase arrest caused by SSA treatment remains to be elucidated. In this study, we found that SSA treatment caused the downregulation of cell cycle regulators, including CCNE1, CCNE2, and E2F1, at both the mRNA and protein levels. We also found that transcription elongation of the genes was deficient in SSA-treated cells. The overexpression of CCNE1 and E2F1 in combination with CDKN1B knockout partially suppressed G1 phase arrest caused by SSA treatment. These results suggest that the downregulation of CCNE1 and E2F1 contribute to the G1 phase arrest induced by SSA treatment, although they do not exclude the involvement of other factors in SSA-induced G1 phase arrest.
Funder
Japan Society for the Promotion of Science
Takeda Science Foundation
Tamura Science & Technology Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献