Normal Skin Cells Increase Aggressiveness of Cutaneous Melanoma by Promoting Epithelial-to-Mesenchymal Transition via Nodal and Wnt Activity

Author:

Untiveros Gustavo,Dezi Lindsay,Gillette Megan,Sidor Julia,Strizzi Luigi

Abstract

Melanoma is a lethal form of skin cancer triggered by genetic and environmental factors. Excision of early-stage, poorly aggressive melanoma often leads to a successful outcome; however, left undiagnosed these lesions can progress to metastatic disease. This research investigates whether the exposure of poorly aggressive melanoma to certain normal skin cells can explain how non-metastatic melanoma becomes more aggressive while still confined to the skin. To this end, we used a serial co-culture approach to sequentially expose cells from two different, poorly aggressive human melanoma cell lines against normal cells of the skin beginning with normal melanocytes, then epidermal keratinocytes, and finally dermal fibroblasts. Protein extraction of melanoma cells occurred at each step of the co-culture sequence for western blot (WB) analysis. In addition, morphological and functional changes were assessed to detect differences between the serially co-cultured melanoma cells and non-co-cultured cells. Results show that the co-cultured melanoma cells assumed a more mesenchymal morphology and displayed a significant increase in proliferation and invasiveness compared to control or reference cells. WB analysis of protein from the co-cultured melanoma cells showed increased expression of Snail and decreased levels of E-cadherin suggesting that epithelial-to-mesenchymal transition (EMT) is occurring in these co-cultured cells. Additional WB analysis showed increased levels of Nodal protein and signaling and signs of increased Wnt activity in the co-cultured melanoma cells compared to reference cells. These data suggest that interaction between poorly aggressive melanoma cells with normal cells of the skin may regulate the transition from localized, poorly aggressive melanoma to invasive, metastatic disease via Nodal and/or Wnt induced EMT.

Funder

Midwestern University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference56 articles.

1. Melanoma epidemiology, biology and prognosis

2. Cutaneous melanoma: From pathogenesis to therapy (Review)

3. The Pathogenesis of Melanoma Induced by Ultraviolet Radiation

4. Association of surface ultraviolet B radiation levels with melanoma and nonmelanoma skin cancer in United States blacks;Pennello;Cancer Epidemiol. Prev. Biomark.,2000

5. Indoor Tanning and Risk of Melanoma: A Case-Control Study in a Highly Exposed Population

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3