Downregulation of lncRNA PpL-T31511 and Pp-miRn182 Promotes Hydrogen Cyanamide-Induced Endodormancy Release through the PP2C-H2O2 Pathway in Pear (Pyrus pyrifolia)
-
Published:2021-10-31
Issue:21
Volume:22
Page:11842
-
ISSN:1422-0067
-
Container-title:International Journal of Molecular Sciences
-
language:en
-
Short-container-title:IJMS
Author:
Li Liang,Liu Jinhang,Liang Qin,Feng Yu,Wang Chao,Wu Shaohua,Li Yongyu
Abstract
Bud endodormancy is an important, complex process subject to both genetic and epigenetic control, the mechanism of which is still unclear. The endogenous hormone abscisic acid (ABA) and its signaling pathway play important roles in the endodormancy process, in which the type 2C protein phosphatases (PP2Cs) is key to the ABA signal pathway. Due to its excellent effect on endodormancy release, hydrogen cyanamide (HC) treatment is considered an effective measure to study the mechanism of endodormancy release. In this study, RNA-Seq analysis was conducted on endodormant floral buds of pear (Pyrus pyrifolia) with HC treatment, and the HC-induced PP2C gene PpPP2C1 was identified. Next, software prediction, expression tests and transient assays revealed that lncRNA PpL-T31511-derived Pp-miRn182 targets PpPP2C1. The expression analysis showed that HC treatment upregulated the expression of PpPP2C1 and downregulated the expression of PpL-T31511 and Pp-miRn182. Moreover, HC treatment inhibited the accumulation of ABA signaling pathway-related genes and hydrogen peroxide (H2O2). Furthermore, overexpression of Pp-miRn182 reduced the inhibitory effect of PpPP2C1 on the H2O2 content. In summary, our study suggests that downregulation of PpL-T31511-derived Pp-miRn182 promotes HC-induced endodormancy release in pear plants through the PP2C-H2O2 pathway.
Funder
National Natural Science Foundation of China
Specialized Research Fund for the Doctoral Program of Higher Education of China
Science and Technology Innovation Special Foundation of Fujian Agriculture and Forestry University
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献