Polyamine Metabolism under Different Light Regimes in Wheat

Author:

Gondor Orsolya Kinga,Tajti JuditORCID,Hamow Kamirán Áron,Majláth Imre,Szalai Gabriella,Janda Tibor,Pál MagdaORCID

Abstract

Although the relationship between polyamines and photosynthesis has been investigated at several levels, the main aim of this experiment was to test light-intensity-dependent influence of polyamine metabolism with or without exogenous polyamines. First, the effect of the duration of the daily illumination, then the effects of different light intensities (50, 250, and 500 μmol m–2 s–1) on the polyamine metabolism at metabolite and gene expression levels were investigated. In the second experiment, polyamine treatments, namely putrescine, spermidine and spermine, were also applied. The different light quantities induced different changes in the polyamine metabolism. In the leaves, light distinctly induced the putrescine level and reduced the 1,3-diaminopropane content. Leaves and roots responded differently to the polyamine treatments. Polyamines improved photosynthesis under lower light conditions. Exogenous polyamine treatments influenced the polyamine metabolism differently under individual light regimes. The fine-tuning of the synthesis, back-conversion and terminal catabolism could be responsible for the observed different polyamine metabolism-modulating strategies, leading to successful adaptation to different light conditions.

Funder

Hungarian Academy of Sciences

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3