The Anti-Inflammatory Effect of Hydrogen Gas Inhalation and Its Influence on Laser-Induced Choroidal Neovascularization in a Mouse Model of Neovascular Age-Related Macular Degeneration

Author:

Liang I-ChiaORCID,Ko Wen-Chin,Hsu Yu-Jou,Lin Yi-Ru,Chang Yun-Hsiang,Zong Xv-Hui,Lai Pei-Chen,Chang Der-Chen,Hung Chi-FengORCID

Abstract

Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. Choroidal neovascularization (CNV) is the major pathologic feature of neovascular AMD. Oxidative damages and the ensuing chronic inflammation are representative of trigger events. Hydrogen gas (H2) has been demonstrated as an antioxidant and plays a role in the regulation of oxidative stress and inflammation. This experiment aimed to investigate the influence of H2 inhalation on a mouse model of CNV. Methods: Laser was used to induce CNV formation. C57BL/6J mice were divided into five groups: the control group; the laser-only group; and the 2 h, 5 h, and 2.5 h/2.5 h groups that received laser and H2 inhalation (21% oxygen, 42% hydrogen, and 37% nitrogen mixture) for 2 h, 5 h, and 2.5 h twice every day, respectively. Results: The severity of CNV leakage on fluorescence angiography showed a significant decrease in the H2 inhalation groups. The mRNA expression of hypoxia-inducible factor 1 alpha and its immediate downstream target vascular endothelial growth factor (VEGF) showed significant elevation after laser, and this elevation was suppressed in the H2 inhalation groups in an inhalation period length-related manner. The mRNA expression of cytokines, including tumor necrosis factor alpha and interlukin-6, also represented similar results. Conclusion: H2 inhalation could alleviate CNV leakage in a laser-induced mouse CNV model, and the potential mechanism might be related to the suppression of the inflammatory process and VEGF-driven CNV formation.

Funder

Cathay General Hospital

Ministry of Science and Technology in Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3