Molecular and Functional Analysis of U-box E3 Ubiquitin Ligase Gene Family in Rice (Oryza sativa)

Author:

Kim Me-Sun,Kang Kwon-KyooORCID,Cho Yong-GuORCID

Abstract

Proteins encoded by U-box type ubiquitin ligase (PUB) genes in rice are known to play an important role in plant responses to abiotic and biotic stresses. Functional analysis has revealed a detailed molecular mechanism involving PUB proteins in relation to abiotic and biotic stresses. In this study, characteristics of 77 OsPUB genes in rice were identified. Systematic and comprehensive analyses of the OsPUB gene family were then performed, including analysis of conserved domains, phylogenetic relationships, gene structure, chromosome location, cis-acting elements, and expression patterns. Through transcriptome analysis, we confirmed that 16 OsPUB genes show similar expression patterns in drought stress and blast infection response pathways. Numerous cis-acting elements were found in promoter sequences of 16 OsPUB genes, indicating that the OsPUB genes might be involved in complex regulatory networks to control hormones, stress responses, and cellular development. We performed qRT-PCR on 16 OsPUB genes under drought stress and blast infection to further identify the reliability of transcriptome and cis-element analysis data. It was confirmed that the expression pattern was similar to RNA-sequencing analysis results. The transcription of OsPUB under various stress conditions indicates that the PUB gene might have various functions in the responses of rice to abiotic and biotic stresses. Taken together, these results indicate that the genome-wide analysis of OsPUB genes can provide a solid basis for the functional analysis of U-box E3 ubiquitin ligase genes. The molecular information of the U-box E3 ubiquitin ligase gene family in rice, including gene expression patterns and cis-acting regulatory elements, could be useful for future crop breeding programs by genome editing.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3