11,12 Epoxyeicosatrienoic Acid Rescues Deteriorated Wound Healing in Diabetes

Author:

Sommer Katharina,Jakob Heike,Reiche Caroline,Henrich DirkORCID,Sterz Jasmina,Frank Johannes,Marzi Ingo,Sander Anna Lena

Abstract

Epoxyeicosatrienoic acids (EET) facilitate regeneration in different tissues, and their benefit in dermal wound healing has been proven under normal conditions. In this study, we investigated the effect of 11,12 EET on dermal wound healing in diabetes. We induced diabetes by i.p. injection of streptozotocin 2 weeks prior to wound creation on the dorsal side of the mouse ear. 11,12 EET was applied every second day on the wound, whereas the control groups received only solvent. Epithelialization was monitored every second day intravitally up to wound closure. Wounds were stained for VEGF, CD31, TGF-β, TNF-α, SDF-1α, NF-κB, and Ki-67, and fibroblasts were counted after hematoxylin-eosin stain on days 3, 6, 9, and 16 after wounding. After induction of diabetes, wounds closed on day 13.00 ± 2.20 standard deviation (SD). Local 11,12 ETT application improved wound closure significantly to day 8.40 ± 1.39 SD. EET treatment enhanced VEGF and CD31 expression in wounds on day 3. It also seemed to raise TNF-α level on all days investigated as well as TGF-β level on days 3 and 6. A decrease in NF-κB could be observed on days 9 and 16 after EET application. The latter findings were not significant. SDF-1α expression was not influenced by EET application, and Ki-67 was significantly less in the EET group on day 9 after EET application. The number of fibroblasts was significantly increased on day 9 after the 11,12 EET application. 11,12 EET improve deteriorated wound healing in diabetes by enhancing neoangiogenesis, especially in the early phase of wound healing. Furthermore, they contribute to the dissolution of the initial inflammatory reaction, allowing the crucial transition from the inflammatory to proliferative phase in wound healing.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3