Plastidial Expression of 3β-Hydroxysteroid Dehydrogenase and Progesterone 5β-Reductase Genes Confer Enhanced Salt Tolerance in Tobacco

Author:

Sameeullah MuhammadORCID,Yildirim MuhammetORCID,Aslam NoreenORCID,Baloğlu Mehmet CengizORCID,Yucesan Buhara,Lössl Andreas G.,Saba Kiran,Waheed Mohammad TahirORCID,Gurel EkremORCID

Abstract

The short-chain dehydrogenase/reductase (SDR) gene family is widely distributed in all kingdoms of life. The SDR genes, 3β-hydroxysteroid dehydrogenase (3β-HSD) and progesterone 5-β-reductases (P5βR1, P5βR2) play a crucial role in cardenolide biosynthesis pathway in the Digitalis species. However, their role in plant stress, especially in salinity stress management, remains unexplored. In the present study, transplastomic tobacco plants were developed by inserting the 3β-HSD, P5βR1 and P5βR2 genes. The integration of transgenes in plastomes, copy number and transgene expression at transcript and protein level in transplastomic plants were confirmed by PCR, end-to-end PCR, qRT-PCR and Western blot analysis, respectively. Subcellular localization analysis showed that 3β-HSD and P5βR1 are cytoplasmic, and P5βR2 is tonoplast-localized. Transplastomic lines showed enhanced growth in terms of biomass and chlorophyll content compared to wild type (WT) under 300 mM salt stress. Under salt stress, transplastomic lines remained greener without negative impact on shoot or root growth compared to the WT. The salt-tolerant transplastomic lines exhibited enhanced levels of a series of metabolites (sucrose, glutamate, glutamine and proline) under control and NaCl stress. Furthermore, a lower Na+/K+ ratio in transplastomic lines was also observed. The salt tolerance, mediated by plastidial expression of the 3β-HSD, P5βR1 and P5βR2 genes, could be due to the involvement in the upregulation of nitrogen assimilation, osmolytes as well as lower Na+/K+ ratio. Taken together, the plastid-based expression of the SDR genes leading to enhanced salt tolerance, which opens a window for developing saline-tolerant plants via plastid genetic engineering.

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3