Authentication and Billing for Dynamic Wireless EV Charging in an Internet of Electric Vehicles

Author:

ElGhanam EimanORCID,Ahmed Ibtihal,Hassan MohamedORCID,Osman Ahmed

Abstract

Dynamic wireless charging (DWC) is a promising technology to charge Electric Vehicles (EV) using on-road charging segments (CS), also known as DWC pads. In order to ensure effective utilization of this on-the-road charging service, communication and coordination need to be established between the EVs and the different network entities, thereby forming an Internet of Electric Vehicles (IoEV). In an IoEV, EVs can utilize different V2X communication modes to enable charging scheduling, load management, and reliable authentication and billing services. Yet, designing an authentication scheme for dynamic EV charging presents significant challenges given the mobility of the EVs and the short contact time between the EVs and the charging segments. Accordingly, this work proposes a fast, secure and lightweight authentication scheme that allows only authentic EVs with valid credentials to charge their batteries while ensuring secure and fair payments. The presented scheme starts with a key pre-distribution phase between the charging service company (CSC) and the charging pad owner (PO), followed by a hash chain and digital signature-based registration and authentication phase between the EV and the CSC, before the EV reaches the beginning of the charging lane. These preliminary authentication phases allow the authentication between the EVs and the charging segments to be performed using simple hash key verification operations prior to charging activation, which reduces the computational cost of the EVs and the CS. Symmetric and asymmetric key cryptography are utilized to secure the communication between the different network entities. Analysis of the computational and transmission time requirements of the proposed authentication scheme shows that, for an EV traveling at 60 km/h to start charging at the beginning of the charging lane, the authentication process must be initiated at least 1.35 m ahead of the starting point of the lane as it requires ≃81 ms to be completed.

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3