Carbon-Supported Mo2C for Oxygen Reduction Reaction Electrocatalysis

Author:

Mladenović DušanORCID,Vujković Milica,Mentus SlavkoORCID,Santos Diogo M. F.ORCID,Rocha Raquel P.ORCID,C. Sequeira Cesar A.ORCID,Figueiredo Jose LuisORCID,Šljukić Biljana

Abstract

Molybdenum carbide (Mo2C)-based electrocatalysts were prepared using two different carbon supports, commercial carbon nanotubes (CNTs) and synthesised carbon xerogel (CXG), to be studied from the point of view of both capacitive and electrocatalytic properties. Cation type (K+ or Na+) in the alkaline electrolyte solution did not affect the rate of formation of the electrical double layer at a low scan rate of 10 mV s−1. Conversely, the different mobility of these cations through the electrolyte was found to be crucial for the rate of double-layer formation at higher scan rates. Molybdenum carbide supported on carbon xerogel (Mo2C/CXG) showed ca. 3 times higher double-layer capacity amounting to 75 mF cm−2 compared to molybdenum carbide supported on carbon nanotubes (Mo2C/CNT) with a value of 23 mF cm−2 due to having more than double the surface area size. The electrocatalytic properties of carbon-supported molybdenum carbides for the oxygen reduction reaction in alkaline media were evaluated using linear scan voltammetry with a rotating disk electrode. The studied materials demonstrated good electrocatalytic performance with Mo2C/CXG delivering higher current densities at more positive onset and half-wave potential. The number of electrons exchanged during oxygen reduction reaction (ORR) was calculated to be 3, suggesting a combination of four- and two-electron mechanism.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3