Effect of Graphene Oxide on Mechanical Properties and Durability of Ultra-High-Performance Concrete Prepared from Recycled Sand

Author:

Chu HongyanORCID,Zhang Yu,Wang Fengjuan,Feng Taotao,Wang Liguo,Wang Danqian

Abstract

Ultra-high-performance concrete (UHPC) has been used as an advanced construction material in civil engineering because of its excellent mechanical properties and durability. However, with the depletion of the raw material (river sand) used for preparing UHPC, it is imperative to find a replacement material. Recycled sand is an alternative raw material for preparing UHPC, but it degrades the performance. In this study, we investigated the use of graphene oxide (GO) as an additive for enhancing the properties of UHPC prepared from recycled sand. The primary objective was to investigate the effects of GO on the mechanical properties and durability of the UHPC at different concentrations. Additionally, the impact of the GO additive on the microstructure of the UHPC prepared from recycled sand was analysed at different mixing concentrations. The addition of GO resulted in the following: (1) The porosity of the UHPC prepared from recycled sand was reduced by 4.45–11.35%; (2) the compressive strength, flexural strength, splitting tensile strength, and elastic modulus of the UHPC prepared from recycled sand were enhanced by 8.24–16.83%, 11.26–26.62%, 15.63–29.54%, and 5.84–12.25%, respectively; (3) the resistance of the UHPC to penetration of chloride ions increased, and the freeze–thaw resistance improved; (4) the optimum mixing concentration of GO in the UHPC was determined to be 0.05 wt.%, according to a comprehensive analysis of its effects on the microstructure, mechanical properties, and durability of the UHPC. The findings of this study provide important guidance for the utilisation of recycled sand resources.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3