Abstract
We report on the preparation of drug nanocarriers by encapsulating losartan potassium (LSR) into amphiphilic block copolymer micelles, utilizing the biocompatible/biodegradable poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) diblock copolymer. The PEO-b-PCL micelles and LSR-loaded PEO-b-PCL nanocarriers were prepared by organic solvent evaporation method (OSEM). Light scattering and nuclear magnetic resonance (NMR) provide information on micelle structure and polymer–drug interactions. According to dynamic light scattering (DLS) analysis, the PEO-b-PCL micelles and LSR-loaded PEO-b-PCL nanocarriers formed nanostructures in the range of 17–26 nm in aqueous milieu. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and ultraviolet-visible (UV-Vis) measurements confirmed the presence of LSR in the polymeric drug solutions. NMR results proved the successful encapsulation of LSR into the PEO-b-PCL micelles by analyzing the drug–micelles intermolecular interactions. Specifically, 2D-NOESY experiments clearly evidenced the intermolecular interactions between the biphenyl ring and butyl chain of LSR structure with the methylene signals of PCL. Additionally, NMR studies as a function of temperature demonstrated an unexpected, enhanced proton mobility of the PEO-b-PCL micellar core in D2O solutions, probably caused by the melting of the PCL hydrophobic core.
Subject
General Materials Science,General Chemical Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献