Abstract
Graphene oxide (GO) and reduced graphene oxide (RGO), due to their large active surface areas, can serve as a platform for biological molecule adhesion (both organic and inorganic). In this work we described methods of preparing composites consisting of GO and RGO and inorganic nanoparticles of specified biological properties: nanoAg, nanoAu, nanoTiO2 and nanoAg2O. The idea of this work was to introduce effective methods of production of these composites that could be used for future biomedical applications such as antibiotics, tissue regeneration, anticancer therapy, or bioimaging. In order to characterize the pristine graphene materials and resulting composites, we used spectroscopic techniques: XPS and Raman, microscopic techniques: SEM with and AFM, followed by X-Ray diffraction. We obtained volumetric composites of flake graphene and Ag, Au, Ag2O, and TiO2 nanoparticles; moreover, Ag nanoparticles were obtained using three different approaches.
Subject
General Materials Science,General Chemical Engineering
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献