Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction

Author:

Rabiei MarziehORCID,Palevicius ArvydasORCID,Monshi Ahmad,Nasiri Sohrab,Vilkauskas Andrius,Janusas GiedriusORCID

Abstract

We report on a comparison of methods based on XRD patterns for calculating crystal size. In this case, XRD peaks were extracted from hydroxyapatite obtained from cow, pig, and chicken bones. Hydroxyapatite was synthesized through the thermal treatment of natural bones at 950 °C. XRD patterns were selected by adjustment of X-Pert software for each method and for calculating the size of the crystals. Methods consisted of Scherrer (three models), Monshi–Scherrer, three models of Williamson–Hall (namely the Uniform Deformation Model (UDM), the Uniform Stress Deformation Model (USDM), and the Uniform Deformation Energy Density Model (UDEDM)), Halder–Wanger (H-W), and the Size Strain Plot Method (SSP). These methods have been used and compared together. The sizes of crystallites obtained by the XRD patterns in each method for hydroxyapatite from cow, pig, and chicken were 1371, 457, and 196 nm in the Scherrer method when considering all of the available peaks together (straight line model). A new model (straight line passing the origin) gave 60, 60, and 53 nm, which shows much improvement. The average model gave 56, 58, and 52 nm, for each of the three approaches, respectively, for cow, pig, and chicken. The Monshi–Scherrer method gave 60, 60, and 57 nm. Values of 56, 62, and 65 nm were given by the UDM method. The values calculated by the USDM method were 60, 62, and 62 nm. The values of 62, 62, and 65 nm were given by the UDEDM method for cow, pig, and chicken, respectively. Furthermore, the crystal size value was 4 nm for all samples in the H-W method. Values were also calculated as 43, 62, and 57 nm in the SSP method for cow, pig, and chicken tandemly. According to the comparison of values in each method, the Scherrer method (straight line model) for considering all peaks led to unreasonable values. Nevertheless, other values were in the acceptable range, similar to the reported values in the literature. Experimental analyses, such as specific surface area by gas adsorption (Brunauer–Emmett–Teller (BET)) and Transmission Electron Microscopy (TEM), were utilized. In the final comparison, parameters of accuracy, ease of calculations, having a check point for the researcher, and difference between the obtained values and experimental analysis by BET and TEM were considered. The Monshi–Scherrer method provided ease of calculation and a decrease in errors by applying least squares to the linear plot. There is a check point for this line that the slope must not be far from one. Then, the intercept gives the most accurate crystal size. In this study, the setup of values for BET (56, 52, and 49 nm) was also similar to the Monshi–Scherrer method and the use of it in research studies of nanotechnology is advised.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3