Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development

Author:

Zhao Jianlun12,Xu Enkai1,Wang Qirui1

Affiliation:

1. College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450046, China

2. College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

The AT-hook motif nuclear-localized (AHL) family members play key roles in plant biological processes via protein–protein and protein-DNA interactions. Here, 22 non-redundant PpAHL genes were identified and analyzed in peach (Prunus persica), one of economically important non-timber forestry crops. The maximum-likelihood (ML) tree classified the PpAHLs into two clades (Clade-A and Clade-B) with three subfamilies: Type_I, Type_II, and Type_III. Exon–intron analysis exhibited that the PpAHLs from Type_I except one (Prupe.1G530300.1) lacked introns, and the PpAHLs from Type_II and Type_III gradually emerged with intron additions, indicating spatial expression patterns, evolutionarily distinct temporal patterns and, likely, neofunctionalization. Duplication event analysis suggested that PpAHLs in peach were mainly expanded through the large-scale duplication events. RNA-seq data showed that PpAHLs were induced by drought stress, and two genes (Prupe.1G530300.1 and Prupe.1G034400.1) from Type_I AHLs were induced at all time points, indicating that they might play key roles in the response to drought stress in peach. The tissue-specific expression pattern of PpAHLs exhibited their biological functions in the development of these specific tissues. In addition, the transient overexpression of Prupe.1G530300.1 and Prupe.1G034400.1 resulted in significant changes in sugar content, suggesting that they may be positive regulators of sugar accumulation in peach fruits. Our study provided novel insights into the roles of PpAHLs in plant development, which was helpful for the functional analysis of peach and related woody fruit trees, and for formulating new strategies for further breeding.

Funder

Major Science and Technology Special Projects in Henan Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3