Abstract
Accurate localization technology is essential for providing location-based services. Global positioning system (GPS) is a typical localization technology that has been used in various fields. However, various indoor localization techniques are required because GPS signals cannot be received in indoor environments. Typical indoor localization methods use the time of arrival, angle of arrival, or the strength of the wireless communication signal to determine the location. In this paper, we propose an indoor localization scheme using signal strength that can be easily implemented in a smartphone. The proposed algorithm uses a trilateration method to estimate the position of the smartphone. The accuracy of the trilateration method depends on the distance estimation error. We first determine whether the propagation path is line-of-sight (LOS) or non-line-of-sight (NLOS), and distance estimation is performed accordingly. This LOS and NLOS identification method decreases the distance estimation error. The proposed algorithm is implemented as a smartphone application. The experimental results show that distance estimation error is significantly reduced, resulting in accurate localization.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献