Comparing Swarm Intelligence Algorithms for Dimension Reduction in Machine Learning

Author:

Kicska GabriellaORCID,Kiss AttilaORCID

Abstract

Nowadays, the high-dimensionality of data causes a variety of problems in machine learning. It is necessary to reduce the feature number by selecting only the most relevant of them. Different approaches called Feature Selection are used for this task. In this paper, we propose a Feature Selection method that uses Swarm Intelligence techniques. Swarm Intelligence algorithms perform optimization by searching for optimal points in the search space. We show the usability of these techniques for solving Feature Selection and compare the performance of five major swarm algorithms: Particle Swarm Optimization, Artificial Bee Colony, Invasive Weed Optimization, Bat Algorithm, and Grey Wolf Optimizer. The accuracy of a decision tree classifier was used to evaluate the algorithms. It turned out that the dimension of the data can be reduced about two times without a loss in accuracy. Moreover, the accuracy increased when abandoning redundant features. Based on our experiments GWO turned out to be the best. It has the highest ranking on different datasets, and its average iteration number to find the best solution is 30.8. ABC obtained the lowest ranking on high-dimensional datasets.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3