Numerical Study of the Effects of Surface Tension and Initial Volume Fraction on Gas-Liquid-Foam Three-Phase Flow Separation Process

Author:

Tan TianTian1,Zhang Jiaqing1,Hu Junjie2,Zhang Jianghong2,Sun Gang2,Li Bo2,Guo Yi1

Affiliation:

1. Anhui Province Key Laboratory of Electric Fire and Safety Protection, State Grid Anhui Electric Power Research Institute, Hefei 230601, China

2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

Abstract

Since it is low in cost and low in toxicity and has good biodegradability, gas-liquid-foam three-phase flow has been widely used in industrial fire protection. Due to the different characteristics of gas, liquid, and foam, liquid precipitation is liable to occur under static conditions, resulting in unstable performance of the mixture. To improve fire extinguishing efficiency, it is of great significance to study the separation process of gas-liquid-foam. In the present study, the effects of the surface tension (range from 0.04 to 0.07) and initial liquid volume fraction (range from 0.2 to 0.5) on the gas-liquid-foam separation process are investigated with the numerical tool Fluent. The liquid volume fraction is mainly influenced by two inverse effects: (a) the transformation of liquid into foam, and (b) the liquid drainage and bursting of foam. In the separation process, the volume fraction of small foam decreases monotonically while the volume fraction of medium and large foam increases slightly. Since the volume fraction of small foam is much greater than medium and large foam and its bursting process is dominant, the liquid volume fraction presents a monotonic increasing trend. The volume of the separated liquid increases almost linearly with time at various surface tensions and initial volume fractions, and the increase rate is about 0.004. In the range of the surface tension examined, the separation process is insensitive to the surface tension, resulting in almost the same drainage time. On the other hand, the separation process depends on the initial liquid volume fraction non-monotonically; namely, when the initial volume fraction is small, with the increase of the initial volume fraction, the liquid is more easily separated from the mixture, and when the initial volume fraction is over a critical value (about 0.4), the separation process is decelerated.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3