Particulate Levels Underneath Landscape Fire Smoke Plumes in the Sydney Region of Australia

Author:

Price Owen F.1ORCID,Rahmani Simin2ORCID,Samson Stephanie1

Affiliation:

1. Bushfire Risk Management Research Hub, University of Wollongong, Wollongong, NSW 2522, Australia

2. Hawkesbury Institute, Western Sydney University, Penrith, NSW 2751, Australia

Abstract

Smoke pollution from landscape fires is a major health problem, but it is difficult to predict the impact of any particular fire. For example, smoke plumes can be mapped using remote sensing, but we do not know how the smoke is distributed in the air-column. Prescribed burning involves the deliberate introduction of smoke to human communities but the amount, composition, and distribution of the pollution may be different to wildfires. We examined whether mapped plumes produced high levels of particulate pollution (PM2.5) at permanent air quality monitors and factors that influenced those levels. We mapped 1237 plumes, all those observed in 17 years of MODIS imagery over New South Wales, Australia, but this was only ~20% of known fires. Prescribed burn plumes tended to occur over more populated areas than wildfires. Only 18% of wildfire plumes and 4% of prescribed burn plumes passed over a monitor (n = 115). A minority of plumes caused a detectable increase in PM2.5: prescribed burn plumes caused an air quality exceedance for 33% of observations in the daytime and 11% at night, wildfire plumes caused exceedances for 48% and 22% of observations in the day and night-time, respectively. Thus, most plumes remained aloft (did not reach the surface). Statistical modelling revealed that wind speed, temperature, and mixing height influenced whether a plume caused an exceedance, and there was a difference between prescribed and wild fires. In particular, in wind speeds below 1 kmhr−1, exceedance was almost certain in prescribed burns. This information will be useful for planning prescribed burning, preparing warnings, and improving our ability to predict smoke impacts.

Funder

NSW Department of Planning and Environment

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3