Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior

Author:

Chen Feng1,Si Liqing2,Zhao Fengjun2,Wang Mingyu2

Affiliation:

1. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Volatile oils in forest fuel can significantly affect forest fire behavior, especially extreme fire behavior, e.g., deflagration, fire storms, blowups, eruptive fires and crown fires. However, how these oils influence fire behavior remains unclear, as few qualitative studies have been performed globally. In the present study, we compared the volatile oil contents and components in live branches and surface dead fuel of Pinus yunnanensis Franch, which is widely distributed in Southwest China, to explore their potential effects on extreme fire behavior. Fifteen samples of live branches and fifteen samples of surface dead fuel were collected. Volatile oils were extracted from the samples using steam distillation, and their components were identified and analyzed using gas chromatography–mass spectrometry (GC-MS). The results show that the volatile oil content in live branches was as high as 8.28 mL·kg−1 (dry weight) and was significantly higher than that in surface dead fuel (3.55 mL·kg−1). The volatile oil content in the P. yunnanensis forest was 126.12 kg per hectare. The main volatile oil components were terpenoids, of which monoterpenes accounted for the highest proportion based on their content (62.63%), followed by sesquiterpenes (22.44%). The terpenoid compounds in live branches were more abundant than those in surface dead fuel. Monoterpenes and sesquiterpenes in volatile oils in forest fuel have low boiling points, high calorific values and a lower explosion limit (LEL; 38.4 g·m−3), which are important characteristics in the manifestation of extreme fire behavior such as deflagration. The analysis results indicate that when heated, the oily gases from P. yunnanensis forest could fill 3284.26 m3 per hectare, with a gas concentration reaching the LEL. We conclude that volatile oil in P. yunnanensis has an important influence on the manifestation of extreme fire behavior, and live branches have a greater effect than surface dead fuel.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference63 articles.

1. Zhang, W.W., Wang, Q.H., Xu, W.H., Yan, X.X., Long, T.T., Wei, J.H., and Gao, Z.L. (2021). Review on “Deflagration” in Forest Fire. For. Inventory Plan, 46.

2. Effects of Season on Ignition of Live Wildland Fuels Using the Forced Ignition and Flame Spread Test Apparatus;McAllister;Combust. Sci. Technol.,2017

3. Experimental determination of emission and laminar burning speeds of α-pinene;Courty;Combust. Flame,2012

4. Energetic study of residual forest biomass using calorimetry and thermal analysis;J. Anal. Calorim.,2005

5. Eruptive behavior of forest fires;Viegas;Fire Technol.,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3