Effect of Al Content on the Microstructural and Grain Growth Kinetics of Magnesium Alloys

Author:

Chen Ruinan,Chen Qinghua,Huang Xu,He Qingsong,Su Jian,Tan Bin,Xu Chao,Deng Huahong,Dai Qingwei

Abstract

In order to control the grain size in thermomechanical processing, the grain growth behavior of hot extruded Mg–xAl–1Zn (x = 3, 6, 9) alloys and their relationship with second phase particles and solutes were investigated. The growth rate of AZ61 is greater than that of AZ31 and AZ91 at 300 °C, 350 °C, 400 °C, and 450 °C under isothermal annealing. The average grain growth exponents n of Mg–xAl–1Zn (x = 3, 6, 9) alloys were 2.26, 2.33, and 2.53 at 300–400 °C, respectively. The deviation from the theoretical value of 2 was attributed to the hindrance of grain boundary migration of Al-rich second phase particles and solute Al. Microscopic observations show that the grain size of the annealed samples is closely related to the shape, volume fraction, size, and distribution position of the second phase particles. Significantly, the pinning effect is stronger for lamellar and network-like second phase particles. In addition, the pinning effect of Al-rich second phase particles plays a more important role in grain refinement than the dragging of solute Al. The growth of abnormal grains in the microstructure is attributed to the high energy difference between the preferentially oriented <112¯0> grains and the surrounding grains, which drives the grain boundaries to overcome the same pinning force of the second phase particles.

Funder

Innovation research group of universities in Chongqing

Chongqing Talents: Exceptional Young Talents Project

Chongqing Youth Expert Studio

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3