A Machine Vision-Based Method for Detecting Surface Hollow Defect of Hot-State Shaft in Cross Wedge Rolling

Author:

Fu HuajieORCID,Wang Ying,Shu XuedaoORCID,Chen Xiaojie,Lin Kai

Abstract

In order to solve the problems of low detection efficiency and safety of artificial surface defects in hot-state cross wedge rolling shaft production line, a machine vision-based method for detecting surface hollow defect of hot-state shafts is proposed. Firstly, by analyzing the high reflective properties of the metal shaft surface, the best lighting method was obtained. And by analyzing the image contrast between image foreground and image background, the most suitable optical filter type in image acquisition was determined. Then, Fourier Gaussian low-pass filtering method is used to remove the interference noise of rolled shafts surface in frequency domain, such as high-light, oxide skin and surface texture. Finally, by analyzing the characteristics of the surface hollow defect area, a defect identification method combining the Otsu threshold method and the adaptive threshold method is proposed to realize the effective extraction of surface hollow defect of rolled shafts. The test results show that the average recognition rate of the method based on machine vision is 95.7%. The results of this paper provide technical support to meet the production requirements of high quality and high performance of cross wedge rolling.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Ningbo Science and Technology Major Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3