Effect of Immersion Time in Chloride Solution on the Properties of Structural Rebar Embedded in Alkali-Activated Slag Concrete

Author:

Aperador WillianORCID,Bautista-Ruiz JorgeORCID,Sánchez-Molina Jorge

Abstract

The electrochemical impedance spectroscopy (EIS) technique is widely used in the study of the corrosion of metallic materials. This method also allows for the electrical characterization at the ceramic–metal interface in contact with an aqueous solution composed of chloride ions. EIS makes it possible to discriminate the contribution of the phenomena that occur in the interface to determine the porosity of the cementitious material. The porosity determines the degree of corrosion of the metallic material and the diffusion processes on the electrode surface. In this study, the degradation of a type of non-Portland cement obtained from blast furnace steel slag and activated alkali was evaluated. This type of cement is of great interest because it avoids the emission of CO2 during its manufacture. Estimating the porosity determined the degree of deterioration suffered by the steel embedded in the concrete as a function of the evaluation time. The hydrated samples were also characterized by 29Si magic angle spinning nuclear magnetic resonance (MAS-NMR) to determine the structure of the formed calcium silicate hydrate (C-S-H) gel. This mixture formed a C-S-H gel, constituted mainly of silicon in the middle groups, in chains in the disilicates. The effect of the slag was remarkable in improving the other evaluated characteristics, i.e., in the porous matrix, the concrete was found to significantly reduce the current passing through as a function of time, showing a reduction in porosity and an increase in impedance because of the generated pozzolanic reaction.

Funder

Vicerrectoria de Investigaciones Universidad Militar Nueva Granada

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3