Fatigue Reliability Prediction Method of Large Aviation Planetary System Based on Hierarchical Finite Element

Author:

Li Ming,Luo Yuan,Xie Liyang

Abstract

The reliability of planetary equipment determines the economic affordability and service safety, to a large extent, for a helicopter transmission system. However, with the continuous improvement of the progressiveness and large-scale degree of new aviation planetary equipment, the contradiction between reliability design indexes and R&D economy is also gradually highlighted. This paper takes the large aviation planetary system as a research object, aims to accurately evaluate the system reliability level formed in design processes, and deeply excavates the inherent characteristics of the planetary system in functional realization and builds a system fatigue reliability evaluation model accordingly. An advanced hierarchical finite element technology is used to calculate dangerous tooth load histories under the influence of system global elastic behavior, and the tooth probability fatigue strength is obtained through the gear low-cycle fatigue test and life distribution transformation method, so as to provide economic load and strength input variables, respectively, for the reliability model. This prediction method can provide targeted structural optimization guidance in the development and design of the large aviation planetary system and significantly reduce the cost of reliability index realization for this kind of large-scale, high-end equipment in design iteration processes.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Education Department of Liaoning Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3