Author:
Wu Zongpei,Jia Yuzhen,Dai Xun,Yi Wei
Abstract
To study the effect of reprocessing on the microstructure and corrosion resistance of Zr-Sn-Nb alloy, the original plates of Zr-Sn-Nb alloy were hot-rolled, cold-rolled and recrystallized to obtain the reprocessed plates. The microstructure of both plates was observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM) and electron backscattering diffraction (EBSD). The original plates and reprocessed plates were put into a static autoclave for 300 days in 360 °C/18.6 MPa water. The relationship between the microstructure and corrosion resistance of the Zr-Sn-Nb alloy was discussed. The coarse deformation grains with twins and fine recrystallized grains were obtained, and grain sizes became smaller. The Ostwald ripening of second phase particles (SPPs) happened, and the average size of SPPs increased. Some SPPs changed from an HCP structure to an FCC structure. Reprocessing made the transition advance, which is related to the accelerated evolution of cracks in the oxide film and the increase in metal-oxide film interface roughness. The deterioration of corrosion resistance is closely related to the change of grain size, SPP size and SPP structure.
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献