Microstructure-Based Modeling and Mechanical Characteristics of Accumulative Roll Bonded Al Nanocomposites with SiC Nanoparticles

Author:

Alsoruji Ghazi S.,Sadoun Ayman M.,Elmahdy Marwa

Abstract

This research work aims to fabricate the Al-4 wt.% SiC nanocomposite using the accumulative roll bonding (ARB) technique. Moreover, a finite element model based on real microstructure representative volume element representation and cohesive zone modeling was developed to predict the mechanical response of the produced composites. The results demonstrated that SiC particles were homogenously distributed inside the Al matrix after five passes. The tensile strength and hardness were improved by increasing the number of ARB passes. The microhardness of an Al-4%SiC composite subjected to five ARB passes was increased to 67 HV compared to 53 HV for Al sheets subjected to the same rolling process. Moreover, owing to greater bonding and grain refinement, tensile strength was increased by a factor of three compared to pure Al. The result of the proposed micro-model successfully predicts the experimentally obtained results of the Al–SiC macro composite. The numerically obtained stress–strain curve was comparable with the experimental one. The results also showed that the size of the used RVE was significantly influential in the prediction of the stress–strain behavior.

Funder

Deanship of Scientific Research

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3