Abstract
Ledeburitic tool steel X210Cr12 was processed by passing through a semi-solid state with subsequent forming on a hydraulic press, thus achieving a fine-grained martensitic matrix, uniformly dispersed fine precipitates, and removal of sharp-edged primary chromium carbides. The hardness value was over 700 HV10. The decomposition of austenite and the promotion of further carbide precipitation were carried out by cryogenic treatment or a combination of cryogenic treatment and tempering. Transmission electron microscopy showed that tempering after cryogenic treatment also led to the precipitation of needle-like M3C carbide, unlike the previous regimes. Furthermore, after the combined treatment, the microstructures showed a significant wear resistance, which was detected both by a waterjet abrasive blast test and a laboratory pin on disk test. Both tests showed a significant increase in wear resistance compared to the initial condition and special high wear resistance steels, such as Hardox 450 and Hardox 600.
Funder
Ministry of Education, Youth and Sports
ERDF
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献