Structural Phase Transformation of Rail Steel in Compression

Author:

Aksenova KrestinaORCID,Gromov VictorORCID,Ivanov Yurii,Qin RongshanORCID,Vashchuk Ekaterina

Abstract

The analysis of structure and defective substructure of rail steel in uniaxial compression to a degree of 50% is carried out. It is revealed that cold hardening has a multi-stage character and is accompanied by fragmentations of pearlite grains which is in field as the degree of deformation increases and reaches ≈ 0.4 volume of the foil studied at ε = 50%. The fragments being formed in ferrite plates are separated by low-angle boundaries. The average size of the fragmented ferrite decreases from 240 nm at ε = 15% to 200 nm at ε = 50%. Concurrently with the ferrite fragmentation, fragments of cementite are also observed. It is found that the sizes of the cementite fragments are in a range of 15 to 20 nm and depend weakly on the degree of sample deformation. The cementite fragmentation is caused by deformation-induced carbon dissolution and dislocation-induced fracture. The carbon atoms diffuse from cementite crystal to dislocations, which move through an interplanar space to form particles of tertiary cementite at nanoscale (2–4 nm). It is found that the increase in the degree of deformation is accompanied by a decrease in the scalar and an excess dislocation density. A physical interpretation of the observations has been given.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3