Selenium and Tellurium Separation: Copper Cementation Evaluation Using Response Surface Methodology

Author:

Hosseinipour Seyedreza,Keshavarz Alamdari EskandarORCID,Sadeghi NimaORCID

Abstract

In recent years, high demands for Se and Te in the solar panels and semiconductors industry have encouraged its extraction from primary and secondary sources. However, the two elements’ similar chemical and physical properties make pure element production, Se or Te, arduous. This work is aimed to investigate the significant factors of Se and/or Te recovery in the copper cementation process using the response surface methodology. The test was carried out in two series, for Te and Se, so that H2SO4, CuSO4, Te(or Se) concentration, and temperature are the factors of experimentation. According to response surface methodology (RSM) results for both test series (i. e. Se and Te), 50 g/L H2SO4, 15 g/L Cu, and 35 °C, 3000 mg/L Se (or 750 mg/L Te) was specified for higher Se recovery (97%), and the lowest Te extraction (2%) as an optimum condition, so that could make a suitable separation process. Hence, the cementation test was conducted in the simultaneous presence of Se and Te, so the separation index became 5291. Moreover, the cementation test was carried out in the pregnant leach solution of copper anode slime, and the separation factor was measured to be 606. On the other hand, the thermodynamic evaluation and XRD patterns of the process’s sediments confirm that Se is precipitated as Cu2Se and Cu1.8Se, whereas no Te components are detected in the sediments.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3