Atomistic Investigation of Titanium Carbide Ti8C5 under Impact Loading

Author:

Xia Kang,Zhan HaifeiORCID,Shao Jianli,Wang JiaqiuORCID,Zheng Zhuoqun,Zhang Xinjie,Li Zhiyong

Abstract

Titanium carbides attract attention from both academic and industry fields because of their intriguing mechanical properties and proven potential as appealing candidates in the variety of fields such as nanomechanics, nanoelectronics, energy storage and oil/water separation devices. A recent study revealed that the presence of Ti8C5 not only improves the impact strength of composites as coatings, but also possesses significant strengthening performance as an interlayer material in composites by forming strong bonding between different matrices, which sheds light on the design of impact protection composite materials. To further investigate the impact resistance and strengthening mechanism of Ti8C5, a pilot Molecular Dynamics (MD) study utilizing comb3 potential is carried out on a Ti8C5 nanosheet by subjecting it to hypervelocity impacts. The deformation behaviour of Ti8C5 and the related impact resist mechanisms are assessed in this research. At a low impact velocity ~0.5 km/s, the main resonance frequency of Ti8C5 is 11.9 GHz and its low Q factor (111.9) indicates a decent energy damping capability, which would eliminate the received energy in an interfacial reflection process and weaken the shock waves for Ti8C5 strengthened composites. As the impact velocity increases above the threshold of 1.8 km/s, Ti8C5 demonstrates brittle behaviour, which is signified by its insignificant out-of-plane deformation prior to crack initiation. When tracking atomic Von Mises stress distribution, the elastic wave propagation velocity of Ti8C5 is calculated to be 5.34 and 5.90 km/s for X and Y directions, respectively. These figures are inferior compared with graphene and copper, which indicate slower energy delocalization rates and thus less energy dissipation via deformation is expected prior to bond break. However, because of its relatively small mass density comparing with copper, Ti8C5 presents superior specific penetration. This study provides a fundamental understanding of the deformation and penetration mechanisms of titanium carbide nanosheets under impact, which is crucial in order to facilitate emerging impact protection applications for titanium carbide-related composites.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Changzhou Health Commission Technology Projects

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3