State-of-the-Art Review on Experimental Investigations of Textile-Reinforced Concrete Exposed to High Temperatures

Author:

Kapsalis Panagiotis,Tysmans TineORCID,Van Hemelrijck Danny,Triantafillou ThanasisORCID

Abstract

Textile-reinforced concrete (TRC) is a promising composite material with enormous potential in structural applications because it offers the possibility to construct slender, lightweight, and robust elements. However, despite the good heat resistance of the inorganic matrices and the well-established knowledge on the high-temperature performance of the commonly used fibrous reinforcements, their application in TRC elements with very small thicknesses makes their effectiveness against thermal loads questionable. This paper presents a state-of-the-art review on the thermomechanical behavior of TRC, focusing on its mechanical performance both during and after exposure to high temperatures. The available knowledge from experimental investigations where TRC has been tested in thermomechanical conditions as a standalone material is compiled, and the results are compared. This comparative study identifies the key parameters that determine the mechanical response of TRC to increased temperatures, being the surface treatment of the textiles and the combination of thermal and mechanical loads. It is concluded that the uncoated carbon fibers are the most promising solution for a fire-safe TRC application. However, the knowledge gaps are still large, mainly due to the inconsistency of the testing methods and the stochastic behavior of phenomena related to heat treatment (such as spalling).

Funder

State Scholarships Foundation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference57 articles.

1. Composite materials—6.2 Mechanical behaviour of textile reinforced concrete in Textile Reinforced Concrete;Hegger,2006

2. Applications of textile-reinforced concrete in the precast industry;Papanicolaou,2016

3. Mechanical characterization of textile reinforced inorganic-matrix composites

4. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

5. Fire resistance of textile fiber composites used in civil engineering;Bisby,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3