Using Domain Adaptation for Incremental SVM Classification of Drift Data

Author:

Tang JunyaORCID,Lin Kuo-Yi,Li Li

Abstract

A common assumption in machine learning is that training data is complete, and the data distribution is fixed. However, in many practical applications, this assumption does not hold. Incremental learning was proposed to compensate for this problem. Common approaches include retraining models and incremental learning to compensate for the shortage of training data. Retraining models is time-consuming and computationally expensive, while incremental learning can save time and computational costs. However, the concept drift may affect the performance. Two crucial issues should be considered to address concept drift in incremental learning: gaining new knowledge without forgetting previously acquired knowledge and forgetting obsolete information without corrupting valid information. This paper proposes an incremental support vector machine learning approach with domain adaptation, considering both crucial issues. Firstly, a small amount of new data is used to fine-tune the previous model to generate a model that is sensitive to the new data but retains the previous data information by transferring parameters. Secondly, an ensemble and model selection mechanism based on Bayesian theory is proposed to keep the valid information. The computational experiments indicate that the performance of the proposed model improved as new data was acquired. In addition, the influence of the degree of data drift on the algorithm is also explored. A gain in performance on four out of five industrial datasets and four synthetic datasets has been demonstrated over the support vector machine and incremental support vector machine algorithms.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and Technology, China Major Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. Learn++: an incremental learning algorithm for supervised neural networks

2. An Online Robust Support Vector Regression for Data Streams

3. Weighted Incremental–Decremental Support Vector Machines for concept drift with shifting window

4. Incremental learning from unbalanced data;Muhlbaier;Proceedings of the IEEE International Joint Conference on Neural Networks 2004,2004

5. Learn++. MT: A New Approach to Incremental Learning;Muhlbaier;Proceedings of the Springer International Workshop on Multiple Classifier Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3