A Thermal-Hydraulic-Gas-Mechanical Coupling Model on Permeability Enhancement in Heterogeneous Shale Volume Fracturing

Author:

Shang Xiaoji,Zhang ZhizhenORCID,Yang Weihao,Wang J.G.ORCID,Zhai Cheng

Abstract

Heat treatment on shale reservoirs can promote the development of secondary fractures in a matrix on the basis of hydraulic fracturing, forming multi-scale gas–water seepage channels and strengthening the gas desorption. Experimental evidence shows that heat treatment can enhance gas recovery in the same mining life. Heat treatment on a shale gas reservoir is a multi-physical and multi-phase coupling process. However, how the thermal stimulation interacts with nonlinear two-phase flow in heterogeneous shale volume fracturing has not been clear. In this paper, a fully coupled THGM model for heating-enhanced shale-gas recovery in heterogeneous shale reservoirs is proposed. First, the governing equations are formulated for the shale-reservoir deformation involving both gas adsorption and thermal expansion, the permeability evolution model for the cracking process of fractured shale, the gas–water two-phase continuity equation considering the effects of gas solubility and the heat transfer equation for heat conduction and convection. The interactions among stress, temperature and seepage in a heterogeneous shale reservoir were studied. Secondly, a test on shale permeability after 50 °C temperature treatment was conducted. The evolution of temperature, capillary pressure, water and gas saturation and the permeability of shale during the heat treatment of the reservoir were numerically analyzed. Finally, the gas production from a shale gas reservoir was numerically simulated with this THGM model. The numerical results indicated that the thermal-induced fracturing, gas desorption and separation from water make predominant contributions to the evolution of permeability. The heat treatment can enhance cumulative gas production by 58.7% after 27.4 years of heat injection through promoting gas desorption and matrix diffusion.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province for Youth Foundation

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3