Deep Learning Approaches to Automatic Chronic Venous Disease Classification

Author:

Barulina MarinaORCID,Sanbaev Askhat,Okunkov Sergey,Ulitin Ivan,Okoneshnikov Ivan

Abstract

Chronic venous disease (CVD) occurs in a substantial proportion of the world’s population. If the onset of CVD looks like a cosmetic defect, over time, it might be transformed into serious problems that will require surgical intervention. The aim of this work is to use deep learning (DL) methods for automatic classification of the stage of CVD for self-diagnosis of a patient by using the image of the patient’s legs. The images of legs with CVD required for DL algorithms were collected from open Internet resources using the developed algorithms. For image preprocessing, the binary classification problem “legs–no legs” was solved based on Resnet50 with accuracy of 0.998. The application of this filter made it possible to collect a dataset of 11,118 good-quality leg images with various stages of CVD. For classification of various stages of CVD according to the CEAP classification, the multi-classification problem was set and resolved by using four neural networks with completely different architectures: Resnet50 and transformers such as data-efficient image transformers (DeiT) and a custom vision transformer (vit-base-patch16-224 and vit-base-patch16-384). The model based on DeiT without any tuning showed better results than the model based on Resnet50 did (precision = 0.770 (DeiT) and 0.615 (Resnet50)). vit-base-patch16-384 showed the best results (precision = 0.79). To demonstrate the results of the work, a Telegram bot was developed, in which fully functioning DL algorithms were implemented. This bot allowed evaluating the condition of the patient’s legs with fairly good accuracy of CVD classification.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3