Abstract
Color is an important feature of vehicles, and it plays a key role in intelligent traffic management and criminal investigation. Existing algorithms for vehicle color recognition are typically trained on data under good weather conditions and have poor robustness for outdoor visual tasks. Fine vehicle color recognition under rainy conditions is still a challenging problem. In this paper, an algorithm for jointly deraining and recognizing vehicle color, (JADAR), is proposed, where three layers of UNet are embedded into RetinaNet-50 to obtain joint semantic fusion information. More precisely, the UNet subnet is used for deraining, and the feature maps of the recovered clean image and the extracted feature maps of the input image are cascaded into the Feature Pyramid Net (FPN) module to achieve joint semantic learning. The joint feature maps are then fed into the class and box subnets to classify and locate objects. The RainVehicleColor-24 dataset is used to train the JADAR for vehicle color recognition under rainy conditions, and extensive experiments are conducted. Since the deraining and detecting modules share the feature extraction layers, our algorithm maintains the test time of RetinaNet-50 while improving its robustness. Testing on self-built and public real datasets, the mean average precision (mAP) of vehicle color recognition reaches 72.07%, which beats both sate-of-the-art algorithms for vehicle color recognition and popular target detection algorithms.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献