Further Results on Robust Output-Feedback Dissipative Control of Markovian Jump Fuzzy Systems with Model Uncertainties

Author:

Nguyen Thanh BinhORCID,Song Hyoung-KyuORCID

Abstract

This paper investigates an improved criterion to synthesize dissipative observer-based controllers for Markovian jump fuzzy systems under model uncertainties. Since fuzzy-basis functions include some immeasurable state variable or uncertain parameters, there are differences in the fuzzy-basis functions between controller and plant, which is a mismatched phenomenon. This work presents the first attempt for applying double-fuzzy summation-based Lyapunov functions for the observer-based control scheme of the Markov jump fuzzy system regarding the mismatched phenomenon. To be specific, the dissipative conditions are formulated in terms of uncertain parameterized bilinear matrix inequalities. Based on the improved relaxation techniques, a linear-matrix-inequality (LMI)-based algorithm is proposed in the framework of sequence linear programming matrix method. The obtained observer-based controller ensures that the closed-loop system is stochastically stable, and the dissipative performances produce less conservative results compared to preceding works via two numerical examples.

Funder

National Research Foundation of Korea

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3