A Malicious Webpage Detection Method Based on Graph Convolutional Network

Author:

Wang Yilin,Xue Siqing,Song Jun

Abstract

In recent years, with the rapid development of the Internet and information technology, video websites, shopping websites, and other portals have grown rapidly. However, malicious webpages can disguise themselves as benign websites and steal users’ private information, which seriously threatens network security. Current detection methods for malicious webpages do not fully utilize the syntactic and semantic information in the web source code. In this paper, we propose a GCN-based malicious webpage detection method (GMWD), which constructs a text graph to describe and then a GCN model to learn the syntactic and semantic correlations within and between webpage source codes. We replace word nodes in the text graph with phrase nodes to better maintain the syntactic and semantic integrity of the webpage source code. In addition, we use the URL links appearing in the source code as auxiliary detection information to further improve the detection accuracy. The experiments showed that the proposed method can achieve 99.86% accuracy and a 0.137% false negative rate, achieving a better performance than other related malicious webpage detection methods.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3