The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm

Author:

Fernandez-Viagas VictorORCID,Sanchez-Mediano Luis,Angulo-Cortes Alvaro,Gomez-Medina DavidORCID,Molina-Pariente Jose Manuel

Abstract

In this paper, we address the permutation flow shop scheduling problem with sequence-dependent and non-anticipatory setup times. These setups are performed or supervised by multiple servers, which are renewable secondary resources (typically human resources). Despite the real applications of this kind of human supervision and the growing attention paid in the scheduling literature, we are not aware of any previous study on the problem under consideration. To cover this gap, we start theoretically addressing the problem by: proposing three mixed-integer linear programming models to find optimal solutions in the problem; and proposing different decoding procedures to code solutions in approximated procedures. After that, the best decoding procedure is used to propose a new mechanism that generates 896 different dispatching rules, combining different measures, indicators, and sorting criteria. All these dispatching rules are embedded in the traditional NEH algorithm. Finally, an iterated greedy algorithm is proposed to find near-optimal solutions. By doing so, we provide academics and practitioners with efficient methods that can be used to obtain exact solutions of the problem; applied to quickly schedule jobs and react under changes; used for initialisation or embedded in more advanced algorithms; and/or easily updated and implemented in real manufacturing scenarios.

Funder

Spanish Ministry of Science and Innovation

Regional Government of Andalusia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3