Simplified Fréchet Distance for Generative Adversarial Nets

Author:

Kim Chung-Il,Kim MeejoungORCID,Jung Seungwon,Hwang EenjunORCID

Abstract

We introduce a distance metric between two distributions and propose a Generative Adversarial Network (GAN) model: the Simplified Fréchet distance (SFD) and the Simplified Fréchet GAN (SFGAN). Although the data generated through GANs are similar to real data, GAN often undergoes unstable training due to its adversarial structure. A possible solution to this problem is considering Fréchet distance (FD). However, FD is unfeasible to realize due to its covariance term. SFD overcomes the complexity so that it enables us to realize in networks. The structure of SFGAN is based on the Boundary Equilibrium GAN (BEGAN) while using SFD in loss functions. Experiments are conducted with several datasets, including CelebA and CIFAR-10. The losses and generated samples of SFGAN and BEGAN are compared with several distance metrics. The evidence of mode collapse and/or mode drop does not occur until 3000k steps for SFGAN, while it occurs between 457k and 968k steps for BEGAN. Experimental results show that SFD makes GANs more stable than other distance metrics used in GANs, and SFD compensates for the weakness of models based on BEGAN-based network structure. Based on the experimental results, we can conclude that SFD is more suitable for GAN than other metrics.

Funder

Korea Electric Power Corporation

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference65 articles.

1. Pros and cons of GAN evaluation measures

2. Domain-adversarial training of neural networks;Ganin;J. Mach. Learn. Res.,2016

3. Generative adversarial text to image synthesis;Reed;arXiv,2016

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3