Blockchain Mechanism and Symmetric Encryption in A Wireless Sensor Network

Author:

Guerrero-Sanchez Alma E.,Rivas-Araiza Edgar A.,Gonzalez-Cordoba Jose LuisORCID,Toledano-Ayala Manuel,Takacs AndrasORCID

Abstract

The Internet of Things (IoT) paradigm allows the connection and exchange of information between millions of smart devices. This paradigm grows and develops exponentially as do the risks and attacks on IoT infrastructures. Security, privacy, reliability, and autonomy are the most important requirements in IoT Systems. If these issues are not guaranteed, the IoT system could be susceptible to malicious users and malicious use. In centralized IoT systems, attacks and risks are greater, especially when data is transmitted between devices and shared with other organizations. To avoid these types of situations, this work presents a decentralized system that guarantees the autonomy and security of an IoT system. The proposed methodology helps to protect data integrity and availability based on the security advantages provided by blockchain and the use of cryptographic tools. The accuracy of the proposed methodology was measured on a temperature and humidity sensing IoT-based Wireless Sensor Network (WSN). The obtained results prove that the proposal fulfils the main requirements of an IoT system. It is autonomous, secure to share and send information between devices and users, has privacy, it is reliable, and the information is available in the infrastructure. Furthermore, this research demonstrates that the proposal is less susceptible to the most frequent attacks against IoT systems, such as linking attack, man in the middle, and Distributed Denial of Service (DDoS) attack.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference79 articles.

1. Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world

2. IOT Service Utilisation in Healthcare. In IoT and Smart Home Automation;Dauwed,2019

3. An IoT based Real-time Low Cost Smart Energy Meter Monitoring System using Android Application;Islam;arXiv,2020

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3