Ribosome-Inactivating Proteins of Bougainvillea glabra Uncovered Polymorphism and Active Site Divergence

Author:

Lin Yihua,Xu Liting,Li Yanyan,Wu Xiaobin,Liu Yijun,Zhu Hongmei,Zhou HantaoORCID

Abstract

Ribosome-inactivating proteins (RIPs) are toxic proteins that can inhibit protein synthesis. RIPs purified from Bougainvillea have low nonspecific toxicity, showing promise for processing applications in the agricultural and medical fields. However, systematic research on the polymorphism of Bougainvillea RIPs is lacking, and it is worth exploring whether different isoforms differ in their active characteristics. The transcriptional and translational expression of type I RIPs in Bougainvillea glabra leaves was investigated in this study. Seven RIPs exhibited seasonal variation at both the mRNA and protein levels. The isoforms BI4 and BI6 showed the highest transcriptional expression in both the summer and autumn samples. Interestingly, BI6 was not detected in the protein level in any of the samples. However, the bioinformatics analysis showed that RIPs derived from the same species were gathered in a different cluster, and that the active sites changed among the isoforms during evolution. The significant discrepancy in Bougainvillea RIPs mainly locates at both termini of the amino acid sequence, particularly at the C terminus. Post-translational modifications may also exist in Bougainvillea RIPs. It is concluded that the reason for the polymorphism of Bougainvillea RIPs may be that these proteins are encoded by multiple genes due to genetic processes such as gene duplication and mutation. According to the results of sequence analysis, the possible functional differences of B. glabra RIP isoforms are discussed with regard to the observed discrepancy in both active sites and structures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3