Abstract
Harmful algal blooms are a significant environmental problem. Cells that bloom are often associated with intercellular or dissolved toxins that are a grave concern to humans. However, cells may also excrete compounds that are beneficial to their competition, allowing the cells to establish or maintain cells in bloom conditions. Here, we develop a yeast cell assay to assess whether the bloom-forming species can change the toxicity of the water environment. The current methods of assessing toxicity involve whole organisms. Here, yeast cells are used as a bioassay model to evaluate eukaryotic cell toxicity. Yeast is a commonly used, easy to maintain bioassay species that is free from ethical concerns, yet is sensitive to a wide array of metabolic and membrane-modulating agents. Compared to methods in which the whole organism is used, this method offers rapid and convenient cytotoxicity measurements using a lower volume of samples. The flow cytometer was employed in this toxicology assessment to measure the number of dead cells using alive/dead stain analysis. The results show that yeast cells were metabolically damaged after 1 h of exposure to our model toxin-producing euryhaline flagellates (Heterosigma akashiwo and Prymnesium parvum) cells or extracts. This amount was increased by extending the incubation time.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献