Evaluation of Signaling Pathways Profiling in Human Dermal Endothelial Cells Treated by Snake Venom Cysteine-Rich Secretory Proteins (svCRiSPs) from North American Snakes Using Reverse Phase Protein Array (RPPA)

Author:

Suntravat MontamasORCID,Sanchez Oscar,Reyes Armando,Cirilo Abcde,Ocheltree Jack S.,Galan Jacob A.,Salazar EmelynORCID,Davies Peter,Sanchez Elda E.

Abstract

Cysteine-Rich Secretory Proteins (CRiSPs) are typically found in many snake venoms; however, the role that these toxins play in the pathophysiology of snakebites is still unclear. Herein, we compared the effects of snake venom CRiSPs (svCRiSPs) from the most medically important species of North American snakes on endothelial cell permeability and vascular permeability. We used reverse phase protein array (RPPA) to identify key signaling molecules on human dermal lymphatic (HDLECs) and blood (HDBECs) endothelial cells treated with svCRiSPs. The results showed that Css-CRiSP isolated from Crotalus scutulatus scutulatus and App-CRiSP from Agkistrodon piscivorus piscivorus are the most potent causes of increase vascular and endothelial permeability in comparison with other svCRiSPs used in this study. We examined the protein expression levels and their activated phosphorylation states in HDLECs and HDBECs induced by App-CRiSP and Css-CRiSP using RPPA. Interestingly, both App-CRiSP and Css-CRiSP induced caveolin-1 expression in HDBECs. We also found that stimulating HDBECs with Css-CRiSP and App-CRiSP significantly induced the phosphorylation of mTOR and Src, respectively. In HDLECs, Css-CRiSP significantly downregulated the expression of N-Cadherin and phospholipase C-gamma, while App-CRiSP significantly enhanced Akt and JNK phosphorylation. These results suggest that the increased endothelial permeability in HDLECs and HDBECs by Css-CRiSP and App-CRiSP may occur through different pathways.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3