Anti-Apoptotic Effect of Flavokawain A on Ochratoxin-A-Induced Endothelial Cell Injury by Attenuation of Oxidative Stress via PI3K/AKT-Mediated Nrf2 Signaling Cascade

Author:

Rajendran PeramaiyanORCID,Alzahrani Abdullah M.,Priya Veeraraghavan Vishnu,Ahmed Emad A.

Abstract

This study investigates the endothelial protective activity of flavokawain A (FKA) against oxidative stress induced by ochratoxin A (OTA), which acts as a mycotoxin, and its primary mechanisms in in vitro models. Reactive oxygen species, in general, regulate oxidative stress that significantly contributes to the pathophysiology of endothelial dysfunctions. OTA exerts toxicity through inflammation and the accumulation of ROS. This research is aimed at exploring the defensive function of FKA against the endothelial injury triggered by OTA through the Nrf2 pathway regulated by PI3K/AKT. OTA exposure significantly increased the nuclear translocation of NFκB, whereas we found a reduction in inflammation via NFκB inhibition with FKA treatment. FKA increased the PI3K and AKT phosphorylation, which may lead to the stimulation of antioxidative and antiapoptotic signaling in HUVECs. It also upregulated the phosphorylation of Nrf2 and a concomitant expression of antioxidant genes, such as HO-1, NQO-1, and γGCLC, depending on the dose under the oxidative stress triggered by OTA. Knockdown of Nrf2 through small interfering RNA (siRNA) impedes the protective role of FKA against the endothelial toxicity induced by OTA. In addition, FKA enhanced Bcl2 activation while suppressing apoptosis marker proteins. Therefore, FKA is regarded as a potential agent against endothelial oxidative stress caused by the deterioration of the endothelium. The research findings showed that FKA plays a key role in activating the p-PI3K/p-AKT and Nrf2 signaling pathways, while suppressing caspase-dependent apoptosis.

Funder

Deanship of Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3