Effect of High-Pressure Torsion and Annealing on the Structure, Phase Composition, and Microhardness of the Ti-18Zr-15Nb (at. %) Alloy

Author:

Gunderov Dmitry12ORCID,Kim Karina12,Gunderova Sofia12,Churakova Anna12ORCID,Lebedev Yuri2,Nafikov Ruslan1ORCID,Derkach Mikhail3ORCID,Lukashevich Konstantin3ORCID,Sheremetyev Vadim3ORCID,Prokoshkin Sergey3

Affiliation:

1. Department of Materials Science and Physics of Metals, Ufa University of Science and Technology, Zaki Validi St. 32, 450076 Ufa, Russia

2. Laboratory of Solid State Physics, Institute of Molecule & Crystal Physics, UFRC RAS, 151 Prospect Oktyabrya, 450075 Ufa, Russia

3. Metal Forming Department, National University of Science and Technology “MISiS”, Leninsky Ave. 4, p. 1., 119049 Moscow, Russia

Abstract

The Ti-18Zr-15Nb shape memory alloys are a new material for medical implants. The regularities of phase transformations during heating of this alloy in the coarse-grained quenched state and the nanostructured state after high-pressure torsion have been studied. The specimens in quenched state (Q) and HPT state were annealed at 300–550 °C for 0.5, 3, and 12 h. The α-phase formation in Ti-18Zr-15Nb alloy occurs by C-shaped kinetics with a pronounced peak near 400–450 °C for Q state and near 350–450 °C for HPT state, and stops or slows down at higher and lower annealing temperatures. The formation of a nanostructured state in the Ti-18Zr-15Nb alloy as a result of HPT suppresses the β→ω phase transformation during low-temperature annealing (300–350 °C), but activates the β→α phase transformation. In the Q-state the α-phase during annealing at 450–500 °C is formed in the form of plates with a length of tens of microns. The α-phase formed during annealing of nanostructured specimens has the appearance of nanosized particle-grains of predominantly equiaxed shape, distributed between the nanograins of β-phase. The changes in microhardness during annealing of Q-specimens correlate with changes in phase composition during aging.

Funder

Russian Science Foundation project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3